648 research outputs found

    Market transformation opportunities for emerging dynamic facade and dimmable lighting control systems

    Get PDF
    ABSTRACT Automated shading and daylighting control systems have been commercially available for decades. The new challenge is to provide a fully functional and integrated façade and lighting system that operates appropriately for all environmental conditions and meets a range of occupant subjective desires and objective performance requirements. These rigorous performance goals must be achieved with solutions that are cost effective and can operate over long periods with minimal maintenance. It will take time and effort to change the marketplace for these technologies and practices, particularly in building a series of documented success stories, and driving costs and risks to much lower levels at which their use becomes the norm. In recent years, the architectural trend toward highly-transparent allglass buildings presents a unique challenge and opportunity to advance the market for emerging, smart, dynamic window and dimmable daylighting control technologies. We believe it is possible to accelerate product market transformation by developing projects where technical advances and the interests of motivated manufacturers and innovative owners converge. In this paper we present a case study example that explains a building owner's decision-making process to use dynamic window and dimmable daylighting controls. The case study project undertaken by a major building owner in partnership with a buildings R&D group was designed explicitly to use field test data in conjunction with the market influence of a major landmark building project in New York City to stimulate change in manufacturers' product offerings. Preliminary observations on the performance of these systems are made. A cost model that was developed with the building owner is explained

    Effects of Overhangs on the Performance of Electrochromic Windows

    Get PDF
    Abstract In this study, various facade designs with overhangs combined with electrochromic (EC) window control strategies were modeled for a typical commercial office building in a hot and cold climate using the DOE 2.1E building energy simulation program. EC windows were combined with overhangs since opaque overhangs provide protection from direct sun which EC windows are unable to do alone. The window wall was divided into an upper and lower aperture so that various combinations of overhang position and control strategies could be considered. The overhang was positioned either at the top of the upper window aperture or between the upper and lower apertures. Overhang depth was varied. EC control strategies were fully bleached at all times, modulated based on incident vertical solar radiation limits, or modulated to meet the design work plane illuminance with daylight. Annual total energy use (ATE), peak electric demand (PED), average daylight illuminance (DI), and daylight glare index (DGI) for south-facing private offices were computed and compared to determine which combinations of façade design and control strategies yielded the greatest energy efficiency, daylight amenity, and visual comfort

    Social Inclusion in a Hyperconnected World

    Get PDF
    Early ‘digital divide’ research focused on inequalities between those who had access to information technologies (IT) and those who did not. This research reflected the view that IT was creating a parallel reality, which people needed to connect to, or risk being left behind. Fast forward to 2013 and a ‘hyperconnected’ world has emerged, characterized by immediate access to information, institutions, and people. The central place of IT in this open, digital world creates a need to investigate the part IT plays in determining the extent to which people can participate in a hyperconnected society. To that end, this panel considers how information systems (IS) research can help reframe digital divide research to address broader issues related to social inclusion. The panel includes reflection on whether investigating the implications of hyperconnectivity for social inclusion requires IS researchers to expand their conceptualizations of ‘legitimate’ IS research questions, theories, and methods

    Pain and Psychological Well-Being Among People with Dementia in Long-Term Care

    Get PDF
    To examine the relationship between self-reported pain and psychological well-being of people with dementia (PWD) living in residential long-term care as indicated by displays of observed emotional expression over the daytime period

    Determination of the Bending Rigidity of Graphene via Electrostatic Actuation of Buckled Membranes

    Get PDF
    The small mass and atomic-scale thickness of graphene membranes make them highly suitable for nanoelectromechanical devices such as e.g. mass sensors, high frequency resonators or memory elements. Although only atomically thick, many of the mechanical properties of graphene membranes can be described by classical continuum mechanics. An important parameter for predicting the performance and linearity of graphene nanoelectromechanical devices as well as for describing ripple formation and other properties such as electron scattering mechanisms, is the bending rigidity, {\kappa}. In spite of the importance of this parameter it has so far only been estimated indirectly for monolayer graphene from the phonon spectrum of graphite, estimated from AFM measurements or predicted from ab initio calculations or bond-order potential models. Here, we employ a new approach to the experimental determination of {\kappa} by exploiting the snap-through instability in pre-buckled graphene membranes. We demonstrate the reproducible fabrication of convex buckled graphene membranes by controlling the thermal stress during the fabrication procedure and show the abrupt switching from convex to concave geometry that occurs when electrostatic pressure is applied via an underlying gate electrode. The bending rigidity of bilayer graphene membranes under ambient conditions was determined to be 35.5−15+2035.5^{+20}_{-15} eV. Monolayers have significantly lower {\kappa} than bilayers

    Literature review - Energy saving potential of user-centered integrated lighting solutions

    Get PDF
    Measures for the reduction of electric energy loads for lighting have predominantly focussed on increasing the efficiency of lighting systems. This efficiency has now reached levels unthinkable a few decades ago. However, a focus on mere efficiency is physically limiting, and does not necessarily ensure that the anticipated energy savings actually materialize. There are technical and non-technical reasons because of which effective integration of lighting solutions and their controls, and thus a reduction in energy use, does not happen. This literature review aims to assess the energy saving potential of integrated daylight and electric lighting design and controls, especially with respect to user preferences and behaviour. It does so by collecting available scientific knowledge and experience on daylighting, electric lighting, and related control systems, as well as on effective strategies for their integration. Based on this knowledge, the review suggests design processes, innovative design strategies and design solutions which – if implemented appropriately – could improve user comfort, health, well-being and productivity, while saving energy as well as the operation and maintenance of lighting systems. The review highlights also regulatory, technical, and design challenges hindering energy savings. Potential energy savings are reported from the retrieved studies. However, these savings derived from separate studies are dependent on their specific contexts, which lowers the ecological validity of the findings. Studies on strategies based on behavioural interventions, like information, feedback, and social norms, did not report energy saving performance. This is an interesting conclusion, since the papers indicate high potentials that deserve further exploration. Quantifying potential savings is fundamental to fostering large scale adoption of user-driven strategies, since this would allow at least a rough estimation of returns for the investors. However, such quantification requires that studies are designed with an inter-disciplinary approach. The literature also shows that strategies, where there is more communication between façade and lighting designers, are more successful in integrated design, which calls for more communication between stakeholders in future building processes
    • …
    corecore